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Abstract. Steady distribution of oil pollutant within an aquifer, discharging from an underground source, is
modeled by a two-dimensional nonlinear diffusion-convection equation. This equation describes oil transport in
the immiscible zone, containing large oil blobs. This zone serves as a secondary source of contaminant in the
dispersed zone, containing freely flowing oil drops. A self-similar solution is obtained for the steady saturation
distribution in the immiscible zone, which is valid at distances greatly exceeding the source size across the
water-flow direction.

The distribution of oil saturation within the aquifer is investigated numerically and analytically as a function
of the water-flow rate, pore sizes and the leakage rate of the oil-pollution source. This rate is characterized by a
dimensionless parameter, dependent on the oil viscosity, aquifer permeability and the water-flow rate in the aquifer.
Various flow regimes are described which yield plum-like contamination patterns. The location of the boundary
between the immiscible and dispersed oil zones is calculated in terms of the source-strength parameter, water
and oil properties and porous-medium structure. A closed form analytical solution is obtained in a particular case
where a linear relationship exists between parameters governing advection and dispersion oil-transport rates.
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1. Introduction

Transport of pollutants in groundwater flows is an important engineering and environmental
problem. Groundwater contamination may result from contaminant leakages from various
sources, including storage tanks, pipelines, etc. This study is devoted to investigation of the
contamination pattern which may result from such leakages.

Various experimental studies [1] reveal that oil contained in a porous medium, fully
saturated with water, (e.g., a saturated aquifer) is partitioned between two zones: The first is
the immiscible zone, containing mostly oil blobs, which are normally larger than the average
pore size and held in pore spaces by the capillary forces. The extension of the immiscible
zone depends on the strength of the capillary forces, which is inversely proportional to the
pore size. This zone is larger in porous media containing finer pores [2].

Adjacent to the immiscible zone is the dispersion zone, containing oil drops which are
much smaller than the pore size. The oil blobs present in the immiscible zone constitute
obstacles to the water flow. On the contrary, in the dispersion zone, the oil-water emulsion
flows freely within the aquifer according to the mass transport advection-dispersion laws [3,
pp. 457–468]. The oil blobs present in the immiscible zone serve as sources for contamination
of the dispersion zone. Field studies of oil transport processes show [4] that the contaminant
distributes in the aquifer between the two zones, as described above.

Here we treat the problem of contamination of an aquifer, resulting from a continuously
leaking source by modeling oil exchange between the immiscible and dispersed zones. The
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goal of this work is the determination of the extension of the immiscible zone for different
flow conditions.

Several models have been developed which are aimed at describing the oil-transfer process
between the two zones. Spielman and Su [5] assumed that the oil-transfer rate between
these zones depends on the droplet size, local flow rate, surface-tension parameters, chemical
environment and the local geometry of the porous medium. Spielman and Goren [6] treated
the problem of oil transfer between the two zones by assuming that blobs held by the capillary
forces in the porous medium form a network of channels. These channels are sufficiently
well connected to enable viscous oil flow. The oil in the immiscible zone prevails in a local
equilibrium with the solid and water phase in accordance with the surface tension coefficients
governing capillary pressure. When the blobs held in the pores are much larger than the
average pore size, large local water-pressure gradients force the trapped blobs through the
pores, thereby causing transport of the trapped oil. This process is accompanied by irreversible
rupture of the transported blobs with subsequent formation of small droplets, which are further
transported in the dispersed zone.

Determination of the extension of the immiscible zone is important for various practical
purposes. This is characterized in terms of the oil saturation S, defined as volumetric fraction
occupied by the oil in a porous medium fully saturated with oil-water mixture. Pinder and
Abriola [7] calculated numerically evolution of the two-dimensional oil distribution in the
immiscible zone by assuming the iso-saturation line S = 0�1 in the immiscible zone to be a
surface source of the dissolved oil in the dispersion zone.

In various hydrological applications the inverse problem of groundwater contamination is of
crucial importance. It means that field data taken in several observation wells are used to assess
the global extension of the contamination, locate its source and evaluate the evolution of the
contamination pattern for given ground-water flow conditions. For this purpose a simple model
is needed, which enables evaluation of the influence of the oil-discharge rate, groundwater flow
rate, oil-water properties and porous structure of the aquifer on the extension of the immiscible
zone. This work is devoted to the above purpose. We use the equations of two-phase oil-water
transport in the immiscible zone to calculate the steady-state oil distribution, and, in particular,
the location of the boundary between the immiscible and the dispersed zones.

The paper is constructed as follows: The second and the third sections deal with the physico-
mathematical model, basic assumptions and problem formulation. In the fourth section the
general similarity solution is developed, which allows reduction of the problem to the solution
of ODEs. These were solved numerically and also analytically in a particular case where a
closed-form solution exists. Section five is devoted to analysis and discussion of the results.

2. Physico-mathematical model

Consider a two-dimensional homogeneous, generally anisotropic horizontal porous layer (of
an aquifer) fully saturated with water, on the regional scale, i.e., over a planar horizontal extent
much larger than its thickness. Consider also a line source of oil of size L� located in the
layer, (see Figure 1) which discharges oil with a constant volumetric rate _Q�. It is assumed
that there is a water flow in the positive y-direction within the aquifer.

We will refer to L� as the length of the source perpendicular to the average water-flow
direction. The extension of the source along the flow is unimportant since the solution to be
developed will be shown to be valid far downstream from the source. In this situation we will



Contamination pattern in groundwater 17

Figure 1. Schematic description of two-dimensional flow of oil-water mixture in the aquifer resulting from an oil
source.

show that it is the length of the line source in the x-direction and the total discharge _Q� which
in fact affect the oil-saturation distribution.

The respective specific discharge vectors qw and qo of the water and the oil in the immiscible
zone in the absence of the gravity force, are modeled by Darcy’s law. We can write this for each
fluid in a Cartesian system, using the double index summation convention (x1 = x; x2 = y)
in the form

qwi
= ��ij

Krw(S)

�w

@Pw

@xj
; i = 1; 2 (1)

and

qoi = ��ij
Kro(S)

�o

@Po

@xj
; i = 1; 2; (2)

where S is the macroscopic (averaged over the layer height) oil saturation in the immiscible
zone (0 < S < 1);Krw(S);Kro(S) are the relative permeabilities, dependent only on the oil
saturation. Other quantities appearing in (1), (2) are: �ij – the Cartesian components of the
permeability tensor, �o; �w – the oil and water viscosities, respectively, Po; Pw – the oil and
water pressures respectively, which are related via the capillary pressure Pc

Pc(S) = Po � Pw: (3)

The conservation of mass for each fluid in a rigid porous medium of porosity � yields

@qwi

@xi
� �

@S

@t
= 0; i = 1; 2 (4)

and

@qoi
@xi

+ �
@S

@t
= 0; i = 1; 2; (5)



18 Arieh Pistiner and Michael Shapiro

where t is the time variable. Combining (1)–(5), we obtain [2]

�
@S

@t
=

@

@xi

 
	(S)�ij

@S

@xj
� qiF (S)

!
; (6)

where

qi = qwi
+ qoi ; i = 1; 2 (7a)

and

F (S) =

�
1 +

Krw(S)�o

Kro(S)�w

��1

; 	(S) =
Krw(S)

�w

dPc(S)
dS

F (S): (7b, c)

Adding Equations (5) (i = 1; 2), we obtain

@qi

@xi
= 0:

We will further assume that the flow is unidirectional. Thus, from the above equation we
obtain qy = q; qx = 0. Generally, the total discharge q can depend on time (e.g., as a result
of rains). We will assume here q = constant, which is known for given aquifer conditions.
In addition we will set [3] �xy = �ys = 0. The fractional flow curve F (S) and the function
	(S) can be represented by power-law relationships [2, 8], usually valid for low oil saturation

F (S) �= F0S
n; 	(S) =


ow

�w
	0S

n�m; (8a, b)

where 
ow is the oil-water surface tension coefficient. Moreover, we can deduce from (7)–(8)
that F0 is a dimensionless factor of order one, and 	0 is of order �Pc=
ow, where �Pc is a
characteristic capillary pressure in the aquifer. Parameters m and n were found to depend on
the oil and water properties, in particular, viscosities and also on the pore-size index of the
porous medium [2]. From the experimental data on fractional flow rates and permeabilities it
was found that m and n typically vary in the following ranges: 1 < n < 3; 1�5 < m < 4.

3. Mathematical formulation

We define dimensionless variables

x̂ = x=Lx; ŷ = y=Ly; t̂ = t=T; (9a, b, c)

where the characteristic convective lengths, Lx; Ly and the characteristic convective time, T ,
are

Lx =
	0
ow

p
�xx�yy

qF0�w
; Ly =

	0
ow�yy

qF0�w
; T =

Ly�

qF0
: (9d, e, f)

Introduce (9a–f) into Equations (6), (8a, b) to obtain

@S

@t̂
+
@Jx

@x̂
+
@Jy

@ŷ
= 0; (10a)
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where Jx; Jy are the dimensionless oil-flux components

Jx = �Sn�m@S

@x̂
; Jy = �Sn�m@S

@ŷ
+ Sn: (10b, c)

We will assume that a steady oil-saturation distribution is established after a sufficiently long
time following the release of oil (t� T ). In such a case @S=@t̂ on the left-hand side of (10a)
vanishes and Equations (10a, b, c) describe a steady-state distribution of the oil saturation
S(x̂; ŷ) within the aquifer.

The volumetric discharge _Q� of the pollutant may be calculated by integration of the oil
flux over the length of the source (cf. Equation (6))

_Q� =

Z
+L�=2

�L�=2

�
	(S)�yy

@S

@y
� qF (S)

������
y=y+

dx =

ow

�w
	0
p
�xx�yy

Z
+L=2

�L=2
Jy

�����
ŷ=ŷ+

dx̂;

where y+ is related to the position and the size of the oil source, to be specified below. This
equation combined with (9b) and (10c) may be recast in the form

_Q =
�w _Q�


ow	0
p
�xx�yy

=

Z
+L=2

�L=2
Jy

�����
ŷ=ŷ+

dx̂; (11a)

wherein the dimensionless parameter L is defined as

L = L�
�wqF0


ow	0
p
�xx�yy

: (11b)

Far from the source, where the sizes of oil blobs diminish, the oil saturation decreases down
to the value S = 0 and the immiscible zone terminates. Beginning from this location the oil
prevails only in the dispersed phase. In fact, the boundary between the immiscible zone and
the dispersion zone is not clearly defined. Rather, a transition zone exists which contains oil
drops of different sizes [9]. However, we will assume that the transition zone is very narrow
and that immiscible and dispersion zones are separated by boundaries

ŷ = Y (x̂); x̂+ < x̂ <1; (12a)

ŷ = �Y (x̂); �1 < x̂ < x̂�; (12b)

where x̂� = �L=2 in accordance with the coordinate system chosen (see Figure 1). This
assumption is consistent with various field observations [7] and implies that the minimal
iso-saturation line S = 0 serves as a boundary between the two zones. In accordance with
the above, the solution for the steady-state oil saturation is subject to the following boundary
conditions

S(x̂; Y (x̂)) = 0; x̂+ < x̂ <1; (13a)

S(x̂;�Y (x̂)) = 0; �1 < x̂ < x̂�: (13b)
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We will place the origin of the coordinate system at the point located at a distance ŷ+
upstream of the leakage source. This distance is to be determined in the course of the solution
process, together with the boundary separating the immiscible and the dispersion oil zones.

All iso-saturation lines are symmetrical with respect to the flow direction (i.e., the ŷ
direction). Hence the problem may be posed in the domain Y (x̂) < ŷ <1; 0 < x̂ <1, with
an additional boundary condition imposed at x̂ = 0

@S

@x̂
= 0 on x̂ = 0: (14)

At early times, when the oil transport is affected by the initial saturation distribution, Equations
(10a, b, c) should be solved for the function S(x̂; ŷ; t) which involves in particular, calculation
of the boundary Y (x̂; t) separating the immiscible and dispersion oil zones (see Equations
(13a, b)). This requires formulation of an additional boundary condition, expressing continuity
of the oil flux across the boundary [5]. As a result, in this case the problem should be solved
both in the immiscible and the dispersion zones.

We will look for a long-time solution of Equations (10a, b, c), where the saturation reaches
a steady-state form S(x̂; ŷ). This means that the oil discharged per unit time by the source is
equal to the total oil flux across the transition zoneY (x̂). Estimates performed in the discussion
section show that such a steady saturation distribution is contaminated sand aquifers is reached
after about six months. At such long times the solution in the dispersion zone is unnecessary,
since both the boundary Y (x̂) and the oil saturation S(x̂; ŷ) in the immiscible zone are
determined from the symmetry properties (similarity nature) of the problem. An additional
boundary condition, required in order to obtain an unambiguous solution is the integral relation
(11a) between the oil discharge rate and the strength _Q of the oil contamination source.

In the following section we will develop a solution which is valid at large distances from
the leakage place (x̂; ŷ � L), i.e., where it may be viewed as a point source. The similarity
solution developed here satisfies the integral equation (11a). In the case where the real oil-flux
distribution along the line source is consistent with the solution Jy(x̂; ŷ+) (see (39a)), the
similarity solution developed in the following section is valid everywhere within the domain
jx̂j > L=2; y > ŷ+.

In fact, the oil-discharge-flux distribution is generally unknown. It is the total discharge
_Q� which is of interest in hydrological applications. In this case the solution obtained here is

valid for large distances ŷ � ŷ+ � L from the source.

4. Self-similar solution

We assume that at the steady-state the distribution of the residual oil is derived from a certain
universal behavior, which is investigated in this study by the similarity method. Towards this
end we look for a transformation that reduces the nonlinear PDE (10a, b, c) into an ODE.
Explicitly, we construct a similarity solution of the form

S(x̂; ŷ) = u(�)1=(n�m+1)ŷ1=(1�m); � = x̂=ŷ; (15a, b)

where u(�) is a similarity function. This implies that the boundary Y (ŷ) in Equation (12a) is
a straight line Y (x̂) = x̂=�b, where a constant �b is to be determined. In particular, �b satisfies
the relation

L=2 = �bŷ+: (15c)
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Substituting (15a, b) in (10a, b, c), we obtain

u0(1 + �2)

n�m+ 1
= g(�) � �un=(n�m+1) �

2
m� 1

u�; (16a)

g0 =
n�m+ 1
m� 1

�
�un=(n�m+1) +

�
1

n�m+ 1
�

1
m� 1

�
u

�
: (16b)

This system is to be solved in 0 < � < �b for appropriate m and n, subject to the boundary
conditions derived from (13a, b), (14)

u0(0) = 0; u(�b) = 0: (17a, b)

An additional condition is provided by Equation (11a), which in combination with (15a, b, c)
may be rewritten in the form

~Q � _QL(n+1�m)=(m�1)

= (2�b)
(n+1�m)=(m�1)

Z L=2

�L=2

�
u

m� 1
+ un=(n�m+1) + �

u0

n�m+ 1

�
d�: (17c)

Equations (16)–(17) were solved numerically, for several values of the dimensionless oil-
discharge parameter ~Q = _QL(n+1�m)=(m�1) and parameters m and n, corresponding to the
practically important situations of oil-water transport in aquifers (see Section 5). We used
the standard Runge–Kutta numerical integration procedure of the 5th order. In addition we
found a closed-form analytical solution for the special case m = n=2 + 1, which enables us
to examine the influence of various physical parameters and to verify the numerical solution
obtained in the special case.

4.1. ANALYTICAL SOLUTION FOR m = n=2 + 1

Assuming that m and n are related via m = n=2 + 1, we can rewrite (15a, b) in the form

S(x̂; ŷ) = (u(�)=ŷ)2=n; � = x̂=ŷ (18a, b)

and the system (16a, b) takes the form

2
n
(u(1 + �2)) = g(�) � �u2; g0 = �u2: (19a, b)

These equations are being solved in the region 0 < � < �b, subject to the boundary conditions
(17a, b). Integration yields the following expression for g

g(�) =
2
n

u(1 + �2)� 2�=n
�

; (20)

where � is an integration constant which will be determined below.
Introduction of (20) into (19a) yields

u0 = �
u(�2 � 1) + 2�=n

�(�2 + 1)
�

n�

2(�2 + 1)
u2: (21)
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In order to integrate this equation, we apply the Ricatti transformation [10, p. 295]

u =
2(�2 + 1)

n�

1
w

dw
d�

; (22)

in terms of as yet unknown function w(�). Introducing (22) into (21) we obtain the following
linear ODE

w00 +
2(�2 � 1)
�(�2 + 1)

w0 +
�

(�2 + 1)
w = 0: (23)

Further, define a new variable z(�)

z =
1
2

 
1�

s
1

�2 + 1

!
; 0 < z < xb < 1=2; (24a)

where zb = z(�b). Note that the inverse function �(z) is given by

� =
2
p
z(1� z)

1� 2z
: (24b)

Introduction of (24a) into (23) then yields the hypergeometric equation

z(z � 1)
d2w

dz2 + (1
2 � z)

dw
dw

� �w = 0; (25)

which possesses the general solution

w(z) = C1F1(z) + C2z
3=2F2(z): (26)

In the above

F1(z) = F (�1� �;�1 + �;� 1
2 ; z); F2(z) = F (1

2 � �; 1
2 + �; 5

2 ; z) (27a,b)

are expressed via the hypergeometric function [11, pp. 555–566] and � =
p

1 + �, andC1; C2

are constants to be determined below.
Using the properties of the hypergeometric series, we rewrite (27a, b) in the following

forms

F1(z) = (1� 2z) cos� + 2�
q
z(1� z) sin� (28a)

and

F2(z) = �
3z�(3=2)

8��
(2�

q
z(1� z) cos� + (2z � 1) sin�); (28b)

where

� = 2�(arcsin
p
z + �l); l = 0; 1; 2; 3 : : : : (29)
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Introduction of (28a, b) into (26) yields

w(z) = sin�
�

2C1�
q
z(1� z)�

3C2(2z � 1)
8��

�

+ cos�
�
C1(1� 2z)�

3C2

4�

q
z(1� z)

�
: (30)

Substituting (24b) in (22), we obtain the following expression for u(z)

u(z) =
1� 2z
n

1
w

dw
dz

: (31)

Differentiation of (30) with respect to z yields the following expression

dw
dz

= 2C1� cos� +
3C2

4�
sin�; (32)

which combines with (30), (31) to yield the following solution for u

u(�(z)) =
2�
n

(2z � 1)(3 tan� � 8��C)

(2z � 1)(3 tan� + 8��C) + 2�
p
z(1� z)(3� 8��C tan�)

; (33)

where C = C1=C2. Using (22) and (24a), we can express du= d� as

du
d�
(z) = �(2z � 1)2

q
z(1� z)

 
2
(u+ 2u2=n)

2z � 1
�
n(2z � 1)

4
1

w(z)

d2w

dz2

!
; (34)

wherein d2w= dz2 is obtained by differentiation of (32)

d2w

dz2 =
�2C1�� sin� + 3

4C2 cos�p
z(z � 1)

: (35)

Introducing (34), (35) into (17a) and using (33), we obtain C in the form

C =
3

8�
p

1 + � tan(2�l
p

1 + �)
; l = 0; 1; 2; 3 : : : : (36)

Substituting (36) in (33), we finally obtain

u(z) =
2�(2z � 1)

n

1

2z � 1 + 2
p

1 + �
q
z(1� z) tan(2

p
1 + � arcsin

p
z)
: (37)

This solution is independent of the integer l. The equation for the boundary �b between the
capillary zone and the finely dispersed oil zone can be obtained by means of (17b)

2
p

1 + � arcsin
q
z(�b) =

1
2�: (38a)
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4.2. CALCULATION OF CONTAMINATION PARAMETERS

The inclination angle � of the boundary is related to the boundary value �b by �b = tan �.
From (38a) it follows that

� =
�

2
p

1 + �
: (38b)

Introduce (18a, b), into (10c) and use (19a, b) to obtain the expressions for the oil saturation
flux

Jy = ŷ�2
�

2
n
(u�)0 + u2

�
; Jx = ŷ�2 2

n
u0: (39a,b)

The oil discharge _Q at a distance ŷ given by Equation (10c) is simplified using (17c), (18a,
b), (39a) and the symmetry of u, thus yielding

_Q = 2ŷ�1
Z L=2

0

�
2
n
u� � g

�
d� = �2ŷ�1

�
u� 2�=n
n�=2

��b
0
: (40a)

It can be shown from Equations (17a) and (21) that

u� 2�=n
n�=2

! 0 as � ! 0; (40b)

which combines with (40a) written for ŷ = ŷ+ and (15c) to obtain the following expression
for the total discharge

_Q =
16�
Ln2 : (41)

This yields the value of the yet unknown coefficient �

� =
_QLn2

16
=

~Qn2

16
; (42)

wherein for the specific relation betweenm and n the oil-discharge parameter, defined in (17c)
reduces to ~Q = _QL. According to the latter, ~Q can be identified as the modified discharging
capacity of the oil source. Introducing of (42) into (39b), we obtain

� =
�

2
q

1 + ~Qn2=16
: (43)

We can show that the total oil discharge in the water-flow direction at any location ŷ > ŷ+
is
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_Q(ŷ) = ŷ�1
~Q

2 tan
�

2
q

1 + ~Qn2=16

: (44)

It may be seen that the total contaminant rate decays as ŷ�1.

5. Results and discussion

The solutions calculated in the previous sections enable investigation of the steady-state
contamination pattern in the aquifer. Two features of the oil distribution are important for
environmental applications: the overall extension of the contamination plume and its shape.
The former can be characterized by the polluted aquifer area, say the region whereS > 0�2. The
shape of the plume can be described by the location of the boundary between the immiscible
and dispersed zones (the zero saturation line, or its opening angle �).

The oil is transported in the aquifer by oil advection and diffusion. The advection along the
water flow direction (y-direction) is governed by the parameter n, appearing in the governing
Equations (10a, b, c). This parameter reflects the effects of the oil/water relative permeabil-
ities and mainly their viscosities (see Equations (7b, 8a)). Namely, smaller n correspond to
faster advection (low viscosity oil). This may be inferred from Equations (10c), where the
dimensionless) advection velocity is identified as Sn�1(n > 1).

In addition to advection with the water flow, the oil also moves as a result of satura-
tion gradient, from the more polluted to less polluted zones. This is perceived in Equations
(10b, c) as diffusion, with the effective diffusivity Sn�m arising from oil penetration through
the interstices under the influence of the capillary pressure gradient (see Equation (7c)). As
such, the relative effect of the capillary diffusion is characterized by the difference n �m,
namely when n > m the diffusion is weak; when n < m, the opposite situation prevails, i.e.,
the diffusion is strong. Physically the former case corresponds to the situation where the oil
viscosity is much larger than that of water (n-large) and the pores are coarse (m-small) and do
not favor capillary motion [2]. Mathematically, whenn > m, the effective diffusivity vanishes
at S ! 0, which means that near the boundary between the immiscible and dispersed zone the
oil is mainly transported by advection. On the other hand, whenn < m, the diffusivity indefi-
nitely increases as S approaches zero. This points to the tendency of increasing the extension
of the plume as n �m becomes negative. As shown below, this tendency is combined with
the influence of the oil discharge rate.

The above general observations are used to interpret the results obtained from the analytical
model and numerical calculations. Figure 2 depicts the angle � of the boundary between the
immiscible and dispersed zone as a function of the dimensionless parameter ~Q = _QL =
_Q�L�qF0�

2=
2
0w	

2
0�xx�yy . This parameter measures the influence of both the total pollutant

discharge rate _Q and L as a single product. Therefore, at large distance ŷ where our solution
is valid, the contamination may be viewed as a result of a point source (L! 0) with infinite
discharge rate ( _Q ! 1). The curves depicted in this figure are obtained from the analytical
solution, developed for m = n=2 + 1. Therefore, the different curves correspond to the
diffusion parameter n�m varying from n�m = � 1

2 (for n = 1) to n�m = 1 (for n = 4).
We can see that, in accordance with the trend generally outlined above, the widest opening
angle of the singularity associated with infinite value of the diffusivity Sn�m is integrable,
which results in a finite extension of the plume in the lateral (x-) direction (i.e., � < �=2).
When n �m 6 �1; � = �=2 and the plume lateral boundaries tend to infinity. Practically,
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in all physically meaningful cases, n > 1; hence n � m > � 1
2 , and for all nonzero water

flow-rates the plume has a finite lateral extension.

Figure 2. The angle � describing the boundary
between the immiscible and dispersed oil zone vs.
oil strength parameter ~Q = _QL.

Figure 3. Self-similar solutions for the saturation
distribution: n = 2; m = 2.

It can be observed that as the flow-rate parameter ~Q decreases, the angle � of the immiscible
zone approaches 1

2�. On the contrary, with increasing ~Q; � diminishes, which reveals the
important influence of oil advection in the water flow direction. With increasing water flow-
rate this oil-transport mechanism becomes more significant, compared with the diffusion
across the flow (in x-direction), induced by the capillary forces. This effect of the water flow-
rate can also be observed in Figure 3, which depicts oil saturation profiles for three values of
~Q and n = m = 2 (intermediate pore size and medium oil viscosity). Such curves may be
useful for calibration of the model, which we can achieve by matching various self-similar
profiles with oil-saturation data collected from observation wells in the aquifer.

Note that the different curves appearing in Figure 2 show the situations varying from
discharge of a light (low-viscosity) oil into a coarse-grained aquifer (n = 1;m = 1�5) to
discharge of a heavy (high-viscosity) oil into a fine-grained aquifer (n = 4;m = 3).

The nonlinear advection effect of ~Q on the downstream plume-like contamination pattern
can be observed in Figures 4–6 (for n = m = 2). It can be seen that in addition to reducing the
value of the opening angle �, the effect of increasing ~Q is to increase the downstream values
of oil saturation. The contamination zone can be characterized by the location of one of the
iso- saturation lines (say S = 0�2), or its largest lateral and streamwise extensions. Figures
4–6 allow such evaluations on the basis of scales Lx; Ly (see Equations (9d, e)) calculated
from the literature data, or from the results of model calibration.

We can see the influence of the parameters m;n on the saturation distribution by compar-
ing the contamination patterns in Figures 4, 7. Increasing m = n from 2 (see Figure 4) to
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Figure 4. Distribution of the oil saturation: ~Q =

6; n = 2;m = 2.
Figure 5. Distribution of the oil saturation: ~Q =

12; n = 2; m = 2.

Figure 6. Distribution of the oil saturation: ~Q =

18; n = 2; m = 2.
Figure 7. Distribution of the oil saturation: ~Q =

6; n = 4;m = 3.

n = 4;m = 3 (see Figure 7) leads to the contamination plume extended in the downstream
direction. In this figure the factor n�m = 1, i.e. the oil diffusivity vanishes at the boundary
between the immiscible and dispersion zones (cf. with constant diffusivity prevailing in the
case shown in Figure 4). As such, oil advection is dominant in Figure 7 corresponding to
the aquifer with larger pores than in Figure 4 plotted for smaller pores. Accordingly, larg-
er values ofn (larger pores) result in a plume more extended in the flow direction. This effect is,
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Figure 8. Distribution of the oil saturation: ~Q =

6; n = 1�2; m = 2.
Figure 9. Distribution of the oil saturation: ~Q =

6; n = 3;m = 2.

however, lumped with the influence of the oil viscosity, which also changes with m. Namely,
Figure 7 depicts contamination pattern of a more viscous oil than that shown in Figure 4.

In contrast with the above data, Figures 8–10 allow to elucidate the sole effects of (i) the oil-
water viscosities and (ii) the pore size of the aquifer, as embodied within the parameters n and
m. These calculations were done for several cases wheren andm were chosen independently.
The data shown in these figures were obtained by numerical integration of Equations (16)–(17),
since for these values of m and n no analytical solution exists.

Figures 8, 9 show the effect of the oil viscosity (as embodied within n) for fixed m = 2,
corresponding for pore size index of � � 3–4, (coarse sands or slit loam [2, 12]). Figure 8
shows the plume form when the viscosity of oil is much lower than the viscosity of water (i.e.,
very light oil [13]). On the other hand, Figure 9 shows the opposite situation, where the oil
viscosity is larger than that of water (heavy oil). We can see that the plume extension of the low
viscosity oil is much larger than that of the more viscous oil: the difference of the plume sizes
in the flow direction amounts to a factor of 1000. This is clearly attributed to the dominating
influence of the oil diffusion (capillary dispersion). Mathematically this may be seen from
the power n�m = �0�8 of the S- dependence of the oil diffusivity in Figure 8. In this case
the plume opening contamination angle is very close to 1

2� and the dimensionless extension
of the line S = 0�2 reaches several thousands. This implies that from the point of view of
environmental contamination the latter case is more dangerous, than the advection-dominated
pattern.

The effect of the pore structure for the viscosity ratio �o=�w � 10 (high-viscosity oil) can
be elucidated from Figures 9, 10. The decreasing pore size (increasingm) causes extension of
the plume in both x- and y-directions, by promoting the oil capillary diffusion. Mathematically
this can be rationalized by observing that the oil diffusivity is larger in circumstances depicted
the Figure 9 than in Figure 8.

Below we estimate the characteristic dimensions of the pollution zone, as obtained from
the similarity solution for water-oil mixture (�w = 10�3 kg/ms, 
ow = 0�03 N/m). For
water velocity 0�01 m/day in a coarse sand aquifer with capillary pressure of 2 cm H2O and
permeability of 10�8 cm2 one obtains from (9e) the characteristic length Ly = 1�7 m and the
characteristic time scale given by (9c) T � 50 days. Taking L� = 1 m as a characteristic
extension of the oil leakage source, F0 � 1, the leakage rate _Q� = 0�36 m3 per day which
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Figure 10. Distribution of the oil saturation: ~Q = 6; n = 3;m = 2�4.

corresponds to the data of Figure 5, one obtains that the extension of the plume calculated
in Figure 5 is about (10–20) Ly � 17–34 m. Moreover, the time in which the steady oil
distribution is achieved t � 50 days, i.e. about 0�5–1 year. These estimates are generally
confirmed by several field studies [14].

6. Summary and conclusions

The distribution of immiscible oil contaminant in a saturated porous medium is analyzed and
described by basic two-dimensional equations of two-phase flow. The self-similar solution
obtained here pertains to the steady-state oil transport. The influences of the leakage rate from
an oil source and its length are lumped in a single parameter ~Q = _QL, describing the source
capacity. It is found that increasing ~Q reduces the value of the immiscible zone angle � and
increases the downstream oil saturation.

We have studied the effects of oil-water mixture properties and the aquifer porous structure,
as embodied within parametersm andn, appearing in the governing equations. Contamination
pattern of low-viscosity oils in aquifers with coarse porous structure is characterized by a
plume extending mainly in the water-flow direction, rather than in the lateral direction. Highly
viscous heavy oils discharging into the aquifer with fine pores have a tendency to spread
sidewards.
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